首页> 外文OA文献 >A strategy to implement Dirichlet boundary conditions in the context of ADER finite volume schemes. One-dimensional conservation laws
【2h】

A strategy to implement Dirichlet boundary conditions in the context of ADER finite volume schemes. One-dimensional conservation laws

机译:在aDER有限体积格式中实现Dirichlet边界条件的策略。一维守恒定律

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

ADER schemes are numerical methods, which can reach an arbitrary order of accuracy in both space and time. They are based on a reconstruction procedure and the solution of generalized Riemann problems. However, for general boundary conditions, in particular of Dirichlet type, a lack of accuracy might occur if a suitable treatment of boundaries conditions is not properly carried out In this work the treatment of Dirichlet boundary conditions for conservation laws in the context of ADER schemes, is concerned. The solution of generalized Riemann problems at the extremes of the computational domain provides the correct influence of boundaries. The reconstruction procedure, for data near to the boundaries, demands information outside the computational domain, which is carried out in terms of ghost cells, which are provided by using the numerical solution of auxiliary problems. These auxiliary problems are hyperbolic and they are constructed from the conservation laws and the information at boundaries, which may be partially or totally known in terms of prescribed functions. The evolution of these problems, unlike the usual manner, is done in space rather than in time due to that these problems are named here, reverse problems. The methodology can be considered as a numerical counterpart of the inverse Lax-Wendroff procedure for filling ghost cells. However, the use of Taylor series expansions, as well as, Lax-Wendroff procedure, are avoided. For the scalar case is shown that the present procedure preserves the accuracy of the scheme which is reinforced with some numerical results. Expected orders of accuracy for solving conservation laws by using the proposed strategy at boundaries are obtained up to fifth-order in both space and time.
机译:ADER方案是数值方法,可以在空间和时间上达到任意精度的精度。它们基于重建过程和广义Riemann问题的解决方案。但是,对于一般的边界条件,尤其是Dirichlet类型的边界条件,如果没有适当地对边界条件进行适当的处​​理,则可能会缺乏准确性。在这项工作中,在ADER方案的背景下处理Dirichlet边界条件用于守恒律,被关注到。在计算域的极端情况下,广义黎曼问题的解决方案提供了边界的正确影响。对于边界附近的数据,重建过程需要计算域外的信息,这是通过使用辅助问题的数值解提供的虚影单元来实现的。这些辅助问题是双曲线的,它们是根据守恒定律和边界信息构造而成的,这些信息根据规定的功能可能是部分或全部已知的。与通常的方式不同,这些问题的演变是在空间而不是时间上完成的,因为这些问题在这里被称为反向问题。该方法可被视为填充幽灵细胞的Lax-Wendroff逆过程的数值对应物。但是,避免使用泰勒级数展开以及Lax-Wendroff过程。对于标量情况,表明了本程序保留了该方案的准确性,并通过一些数值结果对其进行了加强。通过在边界上使用所提出的策略来解决守恒定律的预期精度等级在空间和时间上均达到五阶。

著录项

  • 作者

    Montecinos, Gino;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号